Lenna: X: sch., TFAE	
Lenna: $X:SCM$, $X:S$	-
(3). 3 open X= U Spec(Ai) W/ Di normal.	
Defn. such schemes are called normal schemes.	
Lamme: normal -> reduced.	
CA Facts: (1) R = reduced ring having finitely minimal primes. TFAE. (a) R is normal (b) R is intilly closed in its total ring of fracts (c) R = TT Ri, Ri normal domain. (sTR for S = R non-zerodin	•
(, θt· Δ)(R) - Rn x Kh x x Rh	
Rey pt (n (1. act) = 14; 14: 14: 14: 14. 14. 14. 14. 14. 14. 14. 14. 14. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16	
Example: $A_{M} \subseteq k[X]$ $A_{1} \subseteq k[X] \times k[X] \times k[X]$ $A_{2} \subseteq k[X] \times k[X] \times k[X]$ $A_{3} \subseteq k[X] \times k[X] \times k[X]$ $A_{4} \subseteq k[X] \times k[X] \times k[X]$ $A_{5} \subseteq k[X] \times k[X]$ $A_{6} \subseteq k[X] \times k[X]$ $A_{6} \subseteq k[X] \times k[X]$ $A_{7} \subseteq k[X] \times k[X]$ $A_{8} \subseteq k[X]$?(1) ?(1)
	, ذ
the transition map $(A_n)_{p_n} \longrightarrow (A_{n+1})_{p_{n+1}}$ factors.	
(min'l primes of As have localizations k). \ \k\(\mathbb{Z}_{(X)}\).	

Point Set Top. Fact: X= top, space. Irred. components of X:= max! irred. subset of X. (1) $T \in X$ inved \Rightarrow $T \in X$ inved. (2) Irred. components are closed. (3) $X = \bigcup_{Z \in \{\text{Irred. comp of } X\}} Z$ Lemma: X = scheme, any irred. comp. is of the form: Spec (A) = X, &= A minimal prime, Z = {+} closure in X. Prop. X (oc. North. normal \Rightarrow) $X = \coprod_{\lambda \in \Lambda} X_{\lambda}$, where. X North. \Rightarrow n $X = \coprod_{\lambda \in \Lambda} X_{\lambda}$ is an irred comp. & open λ normal. each 1% - 1pf: pick $T \in X$, irred. comp. Y affine open $Spec(A) \subseteq X$, $\subseteq II$ If $t \in Spec(A)$, then t must be a min. prine, A North normal => A= TT Ai, and ter Ay. \Rightarrow T \cap Spec(A) = $\overline{q+3}$ \vee is an open in Spac (A) II. Lemma: X intil morand $\Rightarrow \Gamma(X, O_X)$ normal domain. Pf: R is a domain. If $f = \frac{a}{b} \in Frac(R)$, interesting over R. Say $f'' + \sum_{i=0}^{u-1} a_i f^i = 0$ for $a_i \in R$. Then \forall affine open $\phi \neq U = Spec(A) \subseteq X$, $b \mid_{\mathcal{U}} \neq 0$ (otherwise $\bigvee_{i=0}^{u-1} A_i \subseteq X$) and $\frac{a|u}{b|u}$ satisfies monic egu $A \Rightarrow \frac{a|u}{b|u} = f_u \in A$.

Clearly \forall affine opens $V \subseteq U$, $f_u|_V = f_V$. (by booking at $Frac(O(u)) \stackrel{\sim}{=}_{0}$)

glues to f as b (glue outcome) = a (if f so on every f). Frac(O(u))